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Chainability

Definition

A continuum, X , is chainable if every (finite) open cover U has an
open chain-refinement V, i.e., V can be written as {Vi : i < n}
such that Vi ∩ Vj 6= ∅ iff |i − j | 6 1.

[0, 1] is chainable; the circle S1 is not.
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Span zero

Definition

A continuum, X , has xxx span zero if every subcontinuum Z of
X × X that satisfies yyy intersects the diagonal {〈x , x〉 : x ∈ X}.

xxx yyy symbol

. . . π1[Z ] = π2[Z ] σX
semi π1[Z ] ⊆ π2[Z ] 1

2σX
surjective π1[Z ] = π2[Z ] = X sσX

surjective semi π2[Z ] = X s 1
2σX

[0, 1] has all spans zero, S1 has all spans non-zero
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An implication

Theorem

In a chainable continuum all spans are zero.

Proof.

If Z is a continuum that is disjoint from the diagonal then take a
chain cover {Vi : i < n} such that Z ∩

⋃
i<n V 2

i = ∅.
Then Z ⊆

⋃
i<j Vi × Vj or Z ⊆

⋃
i>j Vi × Vj .

In either case Z does not satisfy any of the mapping properties.
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The problem

Question (Lelek)

What about the converse?

This was an important problem in metric continuum theory.

But it makes non-metric sense as well.
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Implications

σX = 0 ← 1
2σX = 0

↓ ↓
sσX = 0 ← s 1

2σX = 0

or, contrapositively

σX > 0 → 1
2σX > 0

↑ ↑
sσX > 0 → s 1

2σX > 0
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H∗ is not chainable

H = [0,∞) and H∗ is its Čech-Stone remainder.
For i = 0, 1, 2, 3 put

Ui =
∞⋃
n=0

(
4n + i − 5

8
, 4n + i +

5

8

)
and

Oi = Ex Ui ∩H∗

where Ex U = βH \ cl(H \ U)
(the largest open set in βH that intersects H in U).
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H∗ is not chainable

The open cover {O0,O1,O2,O3} of H∗ does not have a chain
refinement — nice exercise, but a bit convoluted.
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The spans of H∗

It would be nice if some of the spans of H∗ were zero:
we’d have a non-metric counterexample to Lelek’s conjecture.

However: consider f : H→ H, defined by f (x) = x + 1,
and its extension βf : βH→ βH,
and that extension’s restriction f ∗ : H∗ → H∗.

Its graph witnesses that the surjective span of H∗ is non-zero and
hence so are the other three.
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Other candidates

Consider M = ω × [0, 1] and its Čech-Stone compactification βM.

The extension βπ : βM→ βω of the projection π : M→ ω divides
βM into continua.

For u ∈ ω∗ we punt Iu = βπ←(u).

What can we say about the spans of the Iu?
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The span of Iu

Theorem

The span of Iu is non-zero.

The proof is like that for H∗: the continua Iu contain subcontinua
that are quite similar to H∗ and they allow an analogue of the
graph of x 7→ x + 1.
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The other spans of Iu

Theorem (CH)

The surjective span of Iu is non-zero.

The proof is more involved and can best be illustrated with a
picture.

Here the speaker draws an instructive picture on the blackboard.
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Why is this interesting?

Iu has a (very) nice base for its closed sets: the ultrapower of 2I by
the ultrafilter u.

Remember:

The ultrapower of a lattice L is formed as follows.

First take the power LN, with pointwise operations.

Then say f ∼u g if {n : f (n) = g(n)} ∈ u.

The quotient structure
∏

u L = LN/∼u is the ultrapower of L by
the ultrafilter u.
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Why is this interesting?

The big theorem on ultrapowers:
L and

∏
u L are elementary equivalent.

Even:
The ‘obvious’ embedding of L into

∏
u L is an elementary

embedding.
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Chainability is not first-order

Chainability is, just like covering dimension, a property of
every/some lattice base for the closed sets.
(Shrink-and-swell again.)

Now then, . . . , 2I satisfies ‘chainability’ but
∏

u 2I does not, so

unlike the dimensions, chainability is not expressible in first-order
terms in the language of lattices.
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A formula for chainability

The natural formulation is an Lω1,ω-formula.

(∀u1)(∀u2)(∀u3)(∀u4)(
(u1 ∪ u2 ∪ u3 ∪ u4 = X )→

∨
n∈ω

Φn(u1, u2, u3, u4)
)

where Φn(u1, u2, u3, u4) expresses that {u1, u2, u3, u4} has an
n-element chain refinement.

It (indeed) suffices to consider four-element open covers only.
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Span zero is . . .

The status of span zero is not clear: it is either

not a property reducible to bases or

not first-order.

This would make a nice research problem.
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Reflection

Theorem

Any counterexample to Lelek’s problem can be converted into a
metrizable counterexample.

Proof.

Let X be a counterexample, let L ≺ 2X (an elementary sublattice).
Then wL is a metrizable counterexample.

Not quite . . . because of what we have just seen.
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Solution: Use Set Theory

Let θ be ‘suitably large’ and let M ≺ H(θ) be a countable
elementary substructure and let L = M ∩ 2X .

Theorem

In this situation:

wL is chainable iff X is chainable

wL has span zero iff X has span zero (any kind)

K. P. Hart Applications of the Löwenheim-Skolem theorem. Part III
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Proof for Chainability

Chainability is now first-order; we can quantify over the finite
subsets of 2X and finite ordinals.

Furthermore, one needs only consider covers and refinements that
belong to a certain base.
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Span zero

Key observation: let K = M ∩ 2X×X , then wK = wL× wL.

This gives the easy part: if there is a ‘bad’ continuum in X × X
then there is one in M and it is equally bad in wL× wL.

For the converse . . .
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Span zero, continued

. . . if Z ⊆ wL× wL is ‘bad’ then there is an equally bad
continuum in X × X that maps onto Z .

Easier said than constructed: the difficulty lies in the fact that K is
not (necessarily) an elementary substructure of 2wK .
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Span zero, the real argument

Apply Shelah’s Ultrapower theorem: take a cardinal κ, an
ultrafilter u on κ and an isomorphism h :

∏
u(2X×X )→

∏
u wK

(which can be taken to be the identity on K ).

How does that help?

For that we need some topology.
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Dualizing ultrapowers

Take a compact Hausdorff space Y with a lattice base B. Also
take a cardinal κ and an ultrafilter u on κ.

Consider β(κ× Y ). We have two maps

pκ : β(κ× Y )→ βκ (the extension of 〈α, y〉 7→ α).

pY : β(κ× Y )→ Y (the extension of 〈α, y〉 7→ y).

The Wallman space of the ultrapower
∏

u B is the fiber p←κ (u).
Bankston calls this the ultracopower of Y ; we write Yu.
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Span zero, the real argument

Back to Z ⊆ wK .

Let Zu = cl(κ× Z ) ∩ p←κ (u).

Zu is a continuum

wh[Zu] is a continuum in (X × X )u (wh is dual to h).

ZX = pX×X
[
wh[Zu]

]
is a continuum in X × X .

And

qK [ZX ] = qK

[
pX×X

[
wh[Zu]

]]
= pwK

[
(wh)−1

[
wh[Zu]

]]
= Z

So, that’s it!? Almost.
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Span zero, the real argument

First expand the language of lattice with two function symbols π1
and π2.

Apply Shelah’s theorem with this extended language. Then ZX will
inherit the mapping properties that Z has.

Finally then: if X is a non-chainable continuum that has span zero
(of one of the four kinds) than so is wL.
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Postscript

Logan Hoehn has constructed a metrizable continuum that is
non-chainable but that has span zero.

As you all remember from last year’s Toposym.
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Light reading

Website: fa.its.tudelft.nl/~hart
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